Proof:
let us assume that there are finite numbers of primes,say it be P1,P2,P3,.............PK
let N= P1P2P3.............PK + 1
If N is a prime number and N > Pi,
where i=1,2,3,4.............k
then it contradicts our assumption that we have finite number of primes.
So if N is a composite number,
let Pj will divide N for some 1<j<k
=>Pj|N
=>N=Pj*t , where "t" is an integer
=>P1,P2,P3,.............PK =Pj*t
=>P1P2P3.....Pj......PK + 1 = Pj*t
Devide both sides by Pj
=>(P1P2P3.....Pj.......PK + 1)/Pj = t
=>P1P2P3.....Pj-1.Pj+1.......PK + 1/Pj = t
since "t" is an integer so
P1P2P3.....Pj-1.Pj+1.......PK + /Pj will be an integer.
which is not possible
So N must be a prime number
this is a contradiction to our assumption that N is composite.
=> N = P1P2P3.............PK + 1 is also a prime.
Hence there are infinite number of primes.
_____________________________________
Watch Video
____________________________________________________
For GK Updates visit: The Infinite Studies
No comments:
Post a Comment