Saturday, 9 May 2020

There Are Infinite Numbers Of Primes

Proof:

let us assume that there are finite numbers of primes,                                                         
       say it be  P1,P2,P3,.............PK

       let  N=  P1P2P3.............PK + 1

       If N is a prime number and  N > Pi,
                    where i=1,2,3,4.............k
then it contradicts our assumption that we have finite number of primes.

So if N is a composite number, 

let Pj will divide N for some 1<j<k
=>Pj|N
=>N=Pj*t , where "t" is an integer
=>P1,P2,P3,.............PK =Pj*t
=>P1P2P3.....Pj......PK + 1 = Pj*t

Devide both sides by Pj

=>(P1P2P3.....Pj.......P1)/Pj  = t

=>P1P2P3.....Pj-1.Pj+1.......P+ 1/Pj =   t

since "t" is an integer so

P1P2P3.....Pj-1.Pj+1.......P/Pj will be an integer. 
which is not possible
So N must be a prime number
this is a contradiction to our assumption that N is composite.

=> N = P1P2P3.............P+ 1 is also a prime.

Hence there are infinite number of primes.


_____________________________________
Watch Video



____________________________________________________   
For GK Updates visit: The Infinite Studies

No comments:

Post a Comment